JOURNAL OF COMPUTATIONAL PHYSICS 15, 55-80 (1974)

Fast Direct Numerical Sclution of the
Neonhomogeneous Cauchy-Riemann Equaticns

HarvaArRD Lomax AND E. DAL MARTIN

Computational Fluid Dynamics Branch, Ames Researchi Center, NASA,
Moffert Field, California 94035

Received August 6, 1973

A fast direct (noniterative) “Cauchy-Riemann Solver” is developed for solving the
finite-difference equations representing systems of first-order elliptic partial differential
equations in the form of the nonhomogeneous Cauchy-Riemann eguations. The method
is second-order accurate and requires approximately the same computer time as a fast
cyclic-reduction Poisson solver (Buneman’s method, but with the cyclic reduction of
simple tridiagonal matrices replaced by the Thomas algorithm).

The accuracy and efficiency of the direct solver are demonstrated in an application 1o
solving an example problem in aerodynamics: subsonic inviscid flow over a biconvex
airfoil. The analytical small-perturbation solution contains singularitics, which are
captured well by the computational technigue.

The algorithm is expected to be useful in nonlinear subsonic and transonic aerc-
dynamics.

INTRODUCTION

The previously available fast, direct computational algorithms for sclving
finite-difference equations representing partial differential equations containing
elliptic operators have been limited to second-order equations. Those algorithms
and the corresponding computer programs are commonly referred to as “fast
Poisson solvers” (e.g. see [1-6]). They have been used with significant success in
computational physics. In particular they have been useful in computational fluid
dynamics (e.g. see discussion and references in Ref. [7], especially pp. 113 £
180 ff, and 195), usually in the solution of Poisson’s equation for the stream func-
tion, or for the pressure, within computational techniques for solving the Navier-
Stokes equations. More extensive use of the elliptic solvers in other flow problems
has been discussed briefly in Ref. [8], which presented a technique for using the
direct solvers in problems with arbitrary interior boundaries.

In some problems in computational Auid dynamics there appear to be advantages

in working with the corresponding first-order elliptic system of equations [9, 10]
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in terms of the “primitive variables.” In the simplest case, these are the Cauchy-
Riemann equations for the velocity components, U and V (corresponding to
Laplace’s equation for either the velocity potential or the stream function). In more
general cases, the corresponding equations can be used in the form of the non-
homogeneous Cauchy-Riemann equations. This formulation may be preferred
over either the velocity-potential or the stream-function formulation when the right
sides are not both identically zero in the problem. This will be of special interest
in planned future applications. Therefore it was considered desirable to develop a
fast direct algorithm for numerically solving the finite-difference equations repre-
senting those first-order elliptic equations. This paper presents such a development,
including (a) discussion of appropriate indexing and mesh configurations with
resulting orders of accuracy, (b) a procedure for decoupling the algebraic matrix
equations for V values from those for U values, (c) the reduction (direct solution)
of the matrix equations, (d) the final determination of ¥ and U, and (e) an example
problem in subsonic aerodynamics that demonstrates the accuracy and efficiency
of the new direct Cauchy-Riemann solver.

THE NUMERICAL PROBLEM

The linear set of elliptic, first-order, two-dimensional partial differential equations
to be solved numerically can be written in the form

eUjox + oV/ey = s(x, ), (1a)
oU/oy — oV]ox = —uw(x, y). (1b)

In applications to inviscid incompressible fluid flow U and V are components of
total velocity in the x and y directions, respectively, and s and w are functions
representing source and vorticity distributions, respectively, which may include
point sources and point vortices. If s and w are zero, Egs. (1) are the Cauchy-
Riemann equations.

We wish to replace Egs. (1) with a set of finite-difference equations that are to
some order of approximation their equivalent, and then consider the direct (i.e.,
noniterative) solution of the resulting coupled algebraic expressions.

The Difference Equations, the Boundary Conditions, and the Mesh

Consider the simplest case of differencing formulas where the derivatives in
Eq. (1a) are approximated by backward differences at each j, k and those in Eq.(1b)
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are approximated by forward differences. We then have the set of difference
equations.

Wi — U ) Ax + Vip — Vip)idy = Sins
(Uj i1 — U;‘,k)/d)’ — Vigap — Vip)dx = Wk {26}

where j and & index each point (x, y) at which Egs. (1a) and (1b) are both approxi-
mated. The situation is illustrated schematically in Fig. 1. The computation
boundary is indicated by dashed lines. The solid symbols repressnt positions where
the data are given by the boundary conditions, with squares indicating U vaiues
and circles indicating V values. The data at the remaining points {open symbols}
must be determined from the set of algebraic relations given by Egs. (2). The
dot (-) represents a position at which the continuity equation, (1a), is balanced,
and the cross (+-) represents a position at which the vorticity equation, (1b}, s
balanced. This notation will have more meaning in a later recrdering of the mesh.
In this example these positions are coincident (parts (a} and (b) of Fig. 1 show
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Fre. 1. Simplest computation mesh and indexing for (first-order} one-sided finite differsnces
(O ~Udata; 0 ~Vdata; » ~ U, + ¥V, = 5; + ~ U, — V, = —w; solid symbols ~ prescribed
boundary values; dashed lines indicate computation boundary).

identical locations), but the differencing schemes used to approximate the balances
are opposite (indicated by arrows on Fig. 1}. Note that there are twelve equations
(six dots and six crosses) and twelve unknowns (six values of ¥/ and six values
of V). Equations (2) are a first-order approximation to Egs. {1); that is, the trun-
cation error in those equations is proportional to the first power of the spacing
(dx, 43).

Another approximation of Eqs. (I) can be constructed by staggering in half
steps the positions at which the U and V data are carried in the manner illusirated
in Fig. 2(a). For the moment, disregard the “U indices” and “¥ indices” and look
at the j and k indices located only in the shaded areas (on the lower and left sides)
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on Fig. 2(a). The symbols on Fig. 2(a) have the same meaning as before but now
the positions at which the continuity and vorticity equations are balanced are no
longer coincident, and the positions at which the U, V data are stored are different
from the balancing positions as well as from one another. The set of difference

equations can be written

Wiarme — Ui—l/z,k)/Ax + (Vigrre — j,k—1/2)/4‘}’ = Sin> (3a)

Uisasae — Uj+1/z.k)/Ay — (Vistmr12 — y',z;+1/2)/Ax = T Wii1/2,k41/2 (3b)

where j and k index a point (+) at which Eq. (1a) is approximated and j + 1/2,
k + 1/2 is the corresponding point (+) in Fig. 2(a) at which Eq. (1b) is approxi-
mated. Notice that each partial derivative has now been replaced by a central
difference formula, and Eqgs. (3a) and (3b) are, therefore, a second-order-accurate
approximation of Egs. (1). If s and w are zero, the only difference in the actual
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(a) ORDINARY UPPER BOUNDARY (b) MODIFIED UPPER BOUNDARY

FiG. 2. Staggered computation meshes and indexing for (second-order) central differences
with NX =3, NY =2 (@ ~Udata; o~V data; -~ U, +V, =5 +~U, — Vo = —o;
solid symbols ~ prescribed boundary values; dashed lines indicate computation boundary).

programming of the algorithms represented by Egs. (2) and Egs. (3) is in the way
the boundary conditions are aligned with respect to the data. Fig. 2(a) shows one
way in which the staggered data can be carried in the mesh.

Other alignments also exist. For example, Fig. 2(b) illustrates an especially
useful case. Again, disregard “U indices” and “V indices” and look at j and k in
the shaded areas only. In this case the derivatives in Egs. (1) are approximated
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by the central difference formula everywhere except for the vorticity equation
along the upper boundary. For this one line, Eq. (3b} is replaced with

N
%

Wisinrine = Ui )3 4Y) — Vg — Vi) dx = —wiap 010 - (30)
Although Eq. (3¢) is only accurate to the first order, its use is quite appropriaie
for certain applications and will not degrade the overall second-order accuracy.
In fact, for reasons given later, the approximation represented by Eags. (3a}, {3b),
and {3c) is the one we will consider in detail.

Convenient Indexing and Resulting Matrix Equation

In the section 1o follow this one we consider in some detail the direct, noniterative
solution of Eqgs. (3); but first it is convenient to abandon the half-step notation
that appears in these equations in favor of the notaticn illustrated in Fig. 2{a).
Use now the j and k values denoted as “U indices” for indexing U and the jand &
values denoted by “} indices” for indexing V. One can think of a U mesh and 5 ¥
mesh as being distinct and displaced by (}) 4x and (}) 4y from each other, Further,
let the j index of s correspond to that of V and the k index of 5 correspond to that
of U; and Jet the j index of w correspond to that of ¥/ and the & index of w corre-
spond to that of ¥. With this convention the second-order-accurate equations
in terms of the staggered U indices and V indices for Fig. 2(a) are

U — U )Ax + Vi — Vip)/Ay = 55, {4a)
Ui — U )4y — Vipaw — Vi,k>,'/ﬂx = Wy {4t}

Notice that Egs. (2) and (4) have the same form, although they represent quite
different approximations to the basic partial differential equations (1}.

Recall that Fig. 2(b) is the same as Fig. 2(a) except that the vorticity equation
written for the top row of crosses takes the form of Eq. (3c}). In the notation of &/
indices” and “¥ indices,” the latter equation is the same as (4b) but with 4y in the
denominator of the first term replaced by (1) 4y, that is, for the top row of crosses
in Fig. 2(b), Eq. (4b) is replaced by the following equivalent of (3c):

(U e — U3 AJ’) — Vi — Vj,k)/,ﬁx = Wk {4c)

For this top row only, the & index of U corresponds to the same y location as the &
index of ¥. In a mesh construction corresponding to Fig. 2{a) or 2(b) let NX be
the number of dots (or crosses) along a horizontal row and let NY be the number of
dots {or crosses) along a column. Then all of Egs. (4) apply for j = 1, Z,..., NX;
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Eqgs. (4a) and (4b) apply for k = 1,2,.., NY — 1; and Egs. (4a) and (4c) apply
for k = NY.

For the case represented by Fig. 2(b), the matrix formulation of Egs. (4a),
(4b), and (4c) is

1 - - r -
w 0 0 1 Un Ju
—u p 0 0 1 0 Un Ja
0 —u 1 Un Ja
22 0 0 —1 1 U12 f12
0 - p 0 —1 1 Us: Soz
0 —p n —1 1 Us, Jor
__________________ e — —_ =] - =
—1 1 p—pw 0 Va 81
—1 1 | 0 p —p 0 Var 8
—1 | 1y 0 0 p | Vi &x
_________ BSOS —_ A
! !
'! —1 | 'l%/"' —3p U | 812
0 | —1 '1 0 L0 du || Ve 8os
! —1 i E 0 0 Ju Vs 8a2
- SRt B

where each equation has been multiplied through by 4y, and where u = 4y/dx,
and fand g include s Ay and —w Ay, respectively, together with the terms carrying
the boundary conditions and represented by the solid symbols shown in Fig. 2(b).
Let T(a, b, ¢) be a tridiagonal matrix, and set

I=T(0,1,0),
A =puT(—1,1,0),
B = uT(0,1, —1) = A7,
U, = col(Uyi, Ugisseees Unx i) 3 ©6)
Vi = col(Vi x5 Vo seers Vyxan)s S
£, = col(fi.x»So.k oeees Sz o)
g = COl(&1,1 5 Gois »+ves ENX1)> |

where & ranges from 1 to NY, and where A, B, and I are square matrices each of

which is of order NX. Then Eq. (5) can be extended to form the following matrix
of block matrices
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where each of the four quarter blocks of the large matrix in Eq. {7) is of block
dimension NY.

THE SOLUTION ALGORITHW

The Cauchy-Riemann solution algorithm to be described here for solving Egs.
{1}, in the discrete form of (7), has a direct analogy to a procedure whereby Egs. {8}
would be differentiated first (if differentiable) and then combined to obtain s
Poisson equation for V. That analogous procedure, however, is not equivalsnt
to the present algorithm; the two approaches have similarities and differences,
which are described below. As we proceed. it will be seen that the development of
the present algorithm does contain a matrix equation that is equivalent tc a discrete
Poisson difference equation. As a result, an available direct Poisson solver (e.g. &
variation of Buneman’s [1]) can be used within the present solution procedure.

Decoupling U and V

The following simple operation can be used to annihilate all entries in the upper
left-hand quarter of the square block matrix in Eq. (7). Consider the upper half
of this equation:

(1) Subtract the second row from the first row and add A times the first
row in the lower half.

(2} Subtract the third row from the second row and add A times the second
row in the lower half,

(3) Repeat for all but the last row of the upper half, to which is added A
times the last row from the lower half.

Next consider the lower half of Eq. (7):
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(1) Add the bottom row to the one next up.

(2) Then add the second from the bottom to the one next up.

(3) Repeat until all the—I appear only in the diagonal blocks of the lower
left quarter block.

Eg. (7) now has been reduced to the convenient form

o) | I+AB —1I U,
O —I 2I+-AB -1 U,
(0] —I 2I+AB —21I Uyya
(0] —I 214+ AB || Uyy
—1I ! B B R B B \A
,...I B L B B Vg
—'I B B VNY—I
—I B FVuy
_ E, -
F,
Fyv
Fuy
= |--=-- : ®
G;
G,
Gyya
| Gvr
where
F,=f, —f,+ Ag,, G, =g + 8+ "+ gyya + 8y,

F2=f2—f3—f—Ag2, q2:g2+g3+"'+g1\7¥,

FNy_‘.]_ = fyyy — fuvr + Agyy 1, Gyy1 = Svya T+ 8vy»
FNY =S fNY “l’ AgNY: GNY - gNY . (9)
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Note that a factor of 1 in the last column of blocks in the large matrix in Eq. (8}
has been transferred to the last vector, Vyy, in the column of U, , V, vectors.

If we define A, to be the block matrix consisting of the upper right quarter of the
square block matrix in Eq. (8); A, to be the lower right quarter; and

G
s - G i rr{‘
4

[y, Vi F, ] {
S O P 2 A CR P L ~
s_ WL

7 1
Uyy $Vny

[N

E—
€.

| P or

Eg. (8) can be written

AV =F, {ila)
—U + A,V =G, (11b)

Significant results accomplished at this point are that V has been decoupled from
U, so0 V is determined solely by (11a) and then U is determined by (11b); and that all
the diagonal blocks of A, are identical and one off-diagonal block has a factor of 2.
The significance of this will be apparent in the subsection “Cyclic Reduction of
Particular Block Matrices.”

The operations required to generate F and G and to compute U given V are
simple to program and require relatively small amounts of computer time. {A table
of computing-time measurements is given in a later section.) The major iask is
to solve Eq. (11a) for V, where A, is a very large but sparse matrix. This can be
carried out by cyclic reduction as explained in the following sections.

The Efficient Reduction of Block Tridiagonal Matrices

Before considering the direct solution of Eq. (11g), let us investigate scine basic
concepts in the efficient solution of block matrix equations. Let us examine solution
procedures for the following matrix equation, which is identical to (11a) except for
the last column of blocks in the large block matrix A; . For illustration we considsr

he special case where the block dimension is NY = 5 and the dimension of each of
the vectors V, and ¥, is an arbitrary integer NX:

-1 0o o0 oV,
C——IOO;
C -1 0|}V,
0O —1I C —Ijj
0 O —1 C|lv,

[

4 %

coola
|
-

F

VY, ¥

V F
5 Fs

581/15/1-5
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where C is 2I - AB, or the square tridiagonal matrix of scalar elements (of order
NX) given by

c—1 —1
—1 ¢ —1
C = (dy/dxy —1 ¢ - ; (13a)
S
—1 c
in which
¢ = 2[1 + (dx/4y)]. (13b)

(2) Gaussian elimination. Consider first a form of Gaussian elimination for
reducing Eq. (12). In a forward sweep one can reduce (12) to the form

B, B, O O O][W BF;, 1:?1
O B —B 0 O||V| |BR+E| |[B
O O B, —B, O||Vy|=|BR+E]|=|FK| ()
O O O B, —Bllv, B,F, + F, F,
O O O O Bilyv, B,F, -+ F, F,
where
BO - I, Bl = C, and BN+2 - CBN+1 - BN s (14b)

from which the solution follows (to be evaluated in reverse order):

vV, = Bfl[l::l + ByVs]

V, = Bz_l[Fz + B, V]

Vs = B;I[Fg + BVl ). (14c)
V, =By 1[?4 + ByVi]

Vs = B3'[F;]

Now if the By were scalars, the construction of each F,, would require four multipli-
cations and four additions, and the final recursion for the V, would require three
multiplications, four additions, and five divisions; a total of eight additions,
seven multiplications, and five divisions. However, when the By are matrices, the
situation is entirely different, and this fact motivates the following discussion.

The key to the direct reduction techniques is that there exists a martrix poly-
nomial, which can be factored (cf. Ref. [5]). For example, in Eq. (14), each By is a
polynomial in C of degree N (where N is also the number of roots of the polynomial;
see Egs. (16) below). This follows from the recursion relations, Eq. (14b). Thus, one



o
wh

FAST DIRECT CAUCHY-RIEMANN SOLVER

can show by solving the matrix difference equation for By (along with the two con-
ditions) in Eq. (14b) that

BN — (CZ —_ 41)—1,2{[C + (CZ — 41)1j'2]1\/+1 — EC — (CZ _ 41‘}1j?};\"{»l}/’zﬁiﬁ»l f\ii}

from which it follows (i.e., the factorization is given by)

N
By = [] (C— D), (10a)
n=1
where (see Dorr[4])
Aw = 2cosfnm/(N + D), 7 =1,2,., N. (160)

It is important to recognize that the factors in a product of the form
(C—ADC — A1)
commute, A; and A; being any two scalars. Let
B, =C—AJl {{7a}

and notice that B, has the same construction as €, defined in Eq. {133), except
that fOl‘ B’\n N
e =2+ (Ax/AyP2 + A

T TR,
;
!

17b}

i,

Thus, by the definition in Eq. (16a), the term B,F; in Eq. (14a) represents an oper-
ation that can be expressed as four consecutive matrix multiplications on a vecior
of dimension NX that is originally filled with F; . In our notation

B4F5 = B/\1B/\2BI‘33;\;F5 . 1\132

All four of the matrices B, are tridiagonal and their sequence is immaterial because
they all commute with one another.

If we let DYX2, ALAM, and NX be FORTRAN variable names representing
(4y/4x)2, A, , and the rank of C, respectively, the sequence

DOIN = 1,4
ALAM = 2*COS(N*PI/(N + 1))
i CALL SUBROUTINE TRIM(DYX2, ALAM, V, NX)

would carry out the actual arithmetic necessary fo calculate the product B,F. in
Eq. (18). The subroutine TRIM is constructed to perform a single multiplication
of the contents of the first NX elements of the array V by the tridiagonal B, and
return the results in the same array V. )
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Just as B,F, can be expressed as, and computed by, four consecutive multi-
plications of a vector by tridiagonal matrices, the term B;'F; in Eq. (14c) can be
expressed as five consecutive tridiagonal inverses operating on a vector originally
filled with F. Thus

B;'F; = B;'B;!B;B; B;'F; (19)

3

and the program

DOIN =15
ALAM = 2*COS(N*PI/(N -+ 1))
1 CALL SUBROUTINE TRIC(DYX2, ALAM, V, NX)

would carry out the actual arithmetic if the subroutine TRIC performs a single
tridiagonal solution on the array V and returns the results in the same array.
(Throughout this paper we refer to the solution of a tridiagonal-matrix equation as
a “tridiagonal solution.””) Both TRIC and TRIM are extremely simple programs to
write. Again because of the commutative property, the sequence of operations in
Eq. (19) is immaterial.

On the basis of the above discussion, we now note that the solution expressed by
Egs. (14) in matrix algebra would require 16 tridiagonal multiplications, 15 tri-
diagonal solutions, and eight vector additions.

(b) Centralized elimination. Cousider next the solution to Eq. (12) started by

B, —B, (o) 0o O]V, B,F, F,
O B, —-B O0O0]||V, BF, + F, F,
O OB—B O0O||V,] =|BF,+F+F|=]|F]| (0
O O —-B B, O]]|V, BF, + F, I,
O O O -—-B,B||V; B,F, | 08

and followed by

V= Bl_l[f‘:"l + Vs,

V, = Bz_l[F s T Ble]:

Vs = (B; — B)'[Fyl, ). (20b)
V,= Bz_l[lj‘4 + B1V3]a

Vs = B1_1[F5 + V4l

(Notice that B; — B, factors and B,V occurs twice.) Again if the B, were scalars,
the arithmetic count would be eight additions, four multiplications, and five
divisions. This is not largely different from the number of operations required using
Eqgs. (14) and scalar arithmetic. When the B,, are matrices, however, the “operation
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count” for Egs. (20) is five tridiagonal multiplications, nine tridiagonal solutions,
and eight vector additions. This is about half the arithmetic required for the solution
represented by Egs. (14), even when there are only five V,, vectors invotved.

{c) Cyclic reduction. Clearly, block matrices having a form similar to the one in
Eg. (12) can be more and more efficiently inverted as one decreases the number of
simple repetitive matrix multiplications and tridiagonal solutions required in the
process. This amounts to making the largest required value of N in Eq. (16a) a3
small as possible, and to require that the use of those By with large & that do
appear, be as infrequent as possible. These concepts are alien to the theory in-
volving the solution of matrix equations with scalar zlements. (Simple Gaussian
¢limination remains among the most efficient technigues for solving a tridiagonal
matrix equation with scalar elements.)

Probably the most widely known technique for obtaining this minimization o
operations is the method of recursive cyclic reduction, devised by Proz:ssor
G. Golub with collaboration of Dr. R. Hockney (see Refs. [1-3]). This method is
based on odd/even reduction, which was used exiensively by Hockney [2] in direct
two-dimensional Poisson solvers and was the basis for the extension by Buneman
[1] to his double cyclic reduction algorithm for solving Poisson’s equation. Cyclic
reduction has been studied extensively by Buzbee, Golub, and Nielson 5] and has
been used by Martin [11] in a three-dimensional solver. Fourier transform
techniques can also be used to increase the efficiency of divect solutions. In
certain problems they appear to be more efficient than cyclic reduction (Ref. [3])
and in other problems less (Ref. [16]). In any event, we concentrate here on cyclic
reduction because of its greater generality. Cyclic reduction works best on 2 bicck
matrix having the form displayed in Eq. (12) when the block dimensicn lies in the
set 2¢ — [ where L is an integer. In such a casc the matrix operators are

Cy = ﬁ (C — A0, {21a)

where "~
Ap == 2cos[2n — 1)w/2N], n=1,2..., N, 21b)
N=2, [=12.,L-—1 {21c)

Notice that the following recursion relation exists

C,=C ‘)
C,— C2— 21
c,1 =C2— 21 < (21d)

CN = CN'/'s - 21/]
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We make use of these concepts in the following sections.

Cyclic Reduction of Particular Block Matrices

The block matrix A, in Egs. (11) differs from that shown in Eq. (12) by an entry
in the right column. For example, given eight rows of unknowns, Eq. (11a) can be

written

A1V =

- C
—I

—I
C
—1I

—I
C
—1I

—1
C
—1

—1I
C
—I

—1
C
—I

—I
C
—1

—21

1
| 3V

—F. (22a)

C—

=

Cyclic reduction (multiplying the even rows by C and adding the adjacent odd
rows) leads successively, on the left side, to

c, —I v,

~I C, -I Vv,
1 ¢ —2a||v,| (22b)

_‘I C2 %VS

C, —2[ V, )
[—1 CJ [—;VS]’ (22)
and

AEA AN (22d)

where the Cy are given in terms of C by Egs. (21). The solution is found for Vg,
from which V, follows, then V¢ and V,, etc.

The simplicity of this algorithm derives from the choice of the particular differ-
encing formulation used for U, in the vorticity equation along the upper boundary,
the top row in Fig. 2(b)}(Eq. (4c)). If, instead, the scheme illustrated in Fig. 2(a)
had been used, rows 7 and 8 on the left side of Eq. (22a) would have been

~1|]V,
I Cc-—1]]|v,

The solution to a set of equations ending in this fashion is not so straightforward,

L 13 i Gl * 1° 4

i B s T
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For cyclic-reduction to work best on the matrix A, , the number of rows of open
circles in Fig. 2(b) should be in the set 2, 4, 8, 15,..., 2%, The number of columns of
circles in Fig. 2(b) is immaterial, affecting only the size of the tridiagonal C in
Eq. (13a).

Note at this point that Eq. (12) has the same form as is obtained in sclving
Poisson’s equation with Dirichlet conditions. In that case, the values of / indicated
in Eq. Cle)(/ = 1, 2,..., L — 1) are appropriate, where the number of rows in the
block matrix is 2¢ — 1. However, Eq. (22a) actually has a form that could be
obtained in solving Poisson’s equation with a Neumann condition on one boundary
(cf. Ref. [5]). In this case, the number of rows of blocks in Eqg. (22a} is 2%, and the
values of / used in Eq. Ql¢) should be / = 1,2,..., L

Special Treatment to Eliminate Roundoff Difficulties

The discussion in the two previous sub-seciicns implies the use of both matrix
multiplications and tridiagonal solutions. Unfortunately, repeated matrix multipli-
cations can lead to very large numbers, consequent iosses of accuracy dug o
roundoff errors, and eventunal breakdown. For this reason Buneman {1] proposed a
procedure that completely avoids matrix multiplication in the solution process.
The key to this procedure can be appreciated by regrouping ihe right side of the
equations that result from the sequence shown in Eq. (22) under the constraint
that (a) Cy is made to be a factor of one of two sets of terms on the right, and {b}
the grouping is recursive. For example, we set

G -1 BRA Cogs W + P?}_g
—1I ¢ —I vV,i G q pm s
- C, -2 Vol C;qé” + ph.) > {23b)
-1 G L%VS, ngg + p‘”
€~ VI fCa < al)
—I Gl T ce? 2) J 23c)
[CI[3Vs] = [Caas” — pl, (230)

and require in proceeding from (23b) to (23¢) that

C4q§2) e pi-z) — 2[(:"1(1) (1)] jqﬁl) + P‘i) L C q(l) + péﬂ’

(9) + p(’) — C‘)[Cpq(l) + pg(l)] _14 ngél) + Péll

etc. If such a construction for the py” and ¢ is possible without performing any
matrix multiplication, then no multiplications are required in the whole process
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since Cy'Cy = I and the multiplication implied by Cyq\" is cancelled by the
inverse. With some straightforward algebra one can show

p? =F,, (k=1,2..,NY), (24a)

p’ = o+ el + CT2YL (k= 2,4,.., NY), (24b)

P2 =% — P2 + 0 — % + iy + G + s — p& + 200
— p)s + e — pal, (K =4,8,., NY), (24c)

where € = 0 if the subscript is greater than the block dimension NY of the block
matrix, A, (i.e., the number of rows of open circles in Fig. 2(b)). Otherwise, ¢ is 1.
The general term for / > 2 is

p = pih — piP + p8 P — ol + el + CR—PEE + plh — piP
+2p0Y — p P 4 el — eplAl, (k= 4h, 8h, 12h,..., NY), (24d)

where h = 20-2, N’ = 20-D and the Cy are given by Egs. (21) with N

replaced by N'. The expressions for ¢!’ involve only simple combinations of the
(1)

pi’, thus

@ — o, (25a)
q§cl) = %(“‘Pg]—n + P§c1) - €Pl(u221 s (25b)
42 = }(—p, + p2 — ply), (250)

and, in general, for / = 2,
0 = H—p + pP — epid), (25d)

Only the p” are needed in the forward recursion (to be illustrated below). The
¢ are calculated in the backward recursion but are never stored.

Summary of Procedure for Determining V

The rather ponderous notation used in Eqs. (23)~(25) may lead to the implica-
tion that the calculation procedure is complicated. Actually, quite the reverse is
true. The computations are easy to program and necessitate only a minimum of
computer storage (for example, f, , ¥, , pi’, and V,, all occupy the same array of
dimension NX in memory, as do g, , G, , and Uy).

In order to demonstrate the simplicity, we have prepared Fig. 3 (cf. Ref. [3])
to illustrate what actually is required for the direct cyclic reduction for a mesh
with eight rows. In the first place, none of the algebra on the left side of Egs. (23)
takes place in the computer. Only the right side is formed and only the values of
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Fic. 3. Illastration of direct cyclic reduction to obtain V for N = 8.
pil need be stored. Initially eight vector arrays of dimension NX are filled with data
representing the boundary conditions and the source and vorticity distributions
according to Egs. (6) and (9). The preliminary computations of the F, for use in
Eg. (24a) from Eq. (9) are straightforward. For generality in presentation, ¥, is
labeled pi¥ (see Eq. (24a)) and appears in the left column of Fig. 3. The next
column is formed according to Eq. (24b) operating on vectors to its left and over-
storing the old information in the even numbered rows. Successive columns are
formed, each time overstoring the information in the arrays indicated in the figure,
At any stage the information required to compute p; in Egs. (24) is just that in-
formation stored in itself and neighboring vectors from previcus calculations.
In the formation of each column, only repetitive tridiagonal soluticns (ne multi-
plications) and vector additions are required. The tridiagonal solutions are per-
formed successively (after factoring C,, into the tridiagonal matrices according to
Egs. (21)) in a maunner similar to that illustrated by Eq. (19

The backward recursion is illustrated in the right side of Fig. 3. The procedure
would be to compute (from (23d))

Vs = Gl +a, (262}
where q¥ is given by Eq. (25d) with / = 3. Then (from (23¢))
8 q
Vi= G + Vo) 4 g (260)

with Eq. (25¢) for [ = 2, etc. The last step (/ = 0, last column in Fig. 3) is per-
formed using the odd lines in Eq. (22a) with the right sides consisting of pi”’; thus

LA

V, = Cp® - ¥y, 26c)

Vy = CYV, + p? -+ V), etc. {(26d)

7

Again, (i.e., for the entire backward recursion) only tridiagonal solutions and
vector additions are required, and as the overstoring of the p, vectors by the newly
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computed V, vectors proceeds, at any given step just that data is available that is
necessary for the computation of the next step. At the end of backward recursion,
the arrays that initially contained F; now contain the solution for V;, defined in

Eq. (6).
Determination of U

With the V, known, the U, could be determined from Egq. (11b). The simplest
procedure, however, is to go back to the lower half of Eq. (7). The results for the
same example as in the above section (V = 8) are

Us = 3BVy — g;,
[.17 = U8 _[— BV7 — &> (27)

I:T1=U2—I-BV1—g1,

where the j component of each product BV, in Eq. (27) is simply u(¥; ; — Vi)
and where V4 ; is zero if j - 1 is greater than the number of columns of open
circles in Fig. 2(b).

Analogy to Solution of Poisson’s Equation

At the beginning of this section there was mentioned an analogous procedure
involving a Poisson equation for ¥. If s and « were differentiable, Egs. (1) could be
combined to obtain

RV [Ox2 - 82V)0y? = Bsfy - dw/ex.

This equation could be integrated numerically using an available direct Poisson
solver, and the corresponding U could then be obtained by a quadrature.

The multiplications by A (or B) in (7) represent &/6x, and the operator
—1V,_, -+ IV, represents &/éy; their combination that appears in the A, matrix in
Egs. (11) represents a discrete Laplacian operator on ¥ with three-point central
differences for the second derivatives. However, the solution algorithm proposed
for the nonhomogeneous Cauchy-Riemann equations is not equivalent to the
solution of a Poisson equation in terms of V. Two important differences are the
following:

() The matrix manipulations in the algorithm do not necessarily represent
the replacement of derivatives by finite differences. For example, neither these
manipulations nor the accuracy of results depend in any way on the differentiability
of s and w. This fact is especially important in planned future applications in which
s and w have values only at isolated discrete points.
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(b) The Cauchy-Riemann solution algorithm is to be used in iterative
schemes for nonlinear problems in which s and « represent complicated nounlinear
terms that not only vary rapidly but even chanoe form between adjacent mesh
point Hese no forms would not be dire adaptable to the Poissopr eana-

EFYAMPLE PROBLEM IN AERODYNAMICS: THIN BICONVEX AIRFOIL

As an example to illustrate the accuracy, speed, and other properties of the
direct solver in a typical application, we consider the small-perturbation solution
for steady, irrotational, subsonic, inviscid flow over a thin, symmetrical parabolic-
arc biconvex airfoil. This example problem is chosen because (a) it has a
rather simple mathematical formulation, (b) the analytical solution is available for
comparison with the numerical results, (¢) the analytical sclution containe sin-
gularities which should be “captured” to a certain degree by the numerical solution,
and (d) the problem has some direct extensions that are of high current interest in
nonlinear subsonic and transonic aerodynamics.

In addition io the conditions mentioned above. the flow is assumed to be uniform
at infinity (far from the airfoil) with velocity U, (from left to right}, which is
aligned with the airfoil chord. Denote the free-stream Mach number as 4. Denote
by U and V, respectively, the x and y components of total velocity, with the x axis
along the airfoil chord and the y axis as the bisector of the airfoil chord. Both x
and y are normalized by the chord length. The biconvex airfoil surface is designated
by

15(x) = =+ (0.5 — 2x%), (—0.5 < x <0.5), (28)

where e is now defined as the ratio of maximum airfoil thickness to chord length.

Small-Perturbation Problem and its Analytical Soiution

Use of the classical small-perturbation approximations
U=U(l +eu), V=U,er, (29

substituted into the governing conservation equations, leads o the approximate
thin-airfoil problem (to lowest order in ¢€) for u(x, y; M} and o(x, y; M) {sze
Refs. [12, 13]), in which the flow tangency condition on y = p,{x} is transferred
to y = 0 by use of Taylor’s series (see, e.g., Ref. [14]).

The Prandil-Glauert similarity transformation, which converts the problem for
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0<M <1 to an equivalent incompressible problem (see, e.g., Ref. [12,
pp- 30-31], or Ref. [15, p. 64 fI]), is

u(x, y; M) = (1/B) u(x, y), (30a)
v(x, y; M) = o(x, y), (30b)
y = (1/B)y, (30c)
where
B =(1— M)~ @31

Then the equivalent problem (for the half plane, y = 0) is

i, + by =0, (32a)
iy — v, = 0, (32b)
with the conditions
B(x, 0t) = —4x (—0.5 < x < 0.5), (320)
=0(x]|>0.5), (32d)
i, 0—0as x% -+ j2— oo. (32¢)

The analytical solution to Egs. (32) (see Ref. [12, Table A, 2, p. 21]), in terms of
the complex variable z = x + iy, is

ﬁ—izS:—:—[l—zIn (i—i—g%)] (33)

In particular, at ¥ = 0 (where 0 is given on the upper side by Eqs. (32¢) and (32d)),

2 (49

a5, 0) = = (1 —x1n

Note, from Egs. (32¢) and (32d), that 7 is double-valued at the leading and trailing
edges in the perturbation problem, and from Eq. (34) that & goes to minus infinity
at the leading and trailing edges.

Direct Numerical Solution

To solve Egs. (32) numerically we note that the differential equations are the
same as Eq. (1) with s = w = 0 and with U, V, and y replaced respectively by
i1, ¥, and y. Therefore the direct solver using recursive cyclic reduction described
above can be used. The computational algorithm requires # to be specified on the
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left and upper boundary lines and o to be specified on the right and lower boundary
lines. The condition specified on y = 0 is given by Egs. (32¢) and (32d). For the
other three boundary lines, the infinity condition, Eq. (32e}, is freated in differsnt
ways as described in the next subsection.

After &7 and © are determined at the x and ¥ corresponding to the staggered mesh
points indicated by open squares and circles in Fig. 2(b)but with a larger number)
it is desired to determine numerical values of i on j = 0 for comparison with the
analytical solution (Eq. (34)). For this purpose, the following second-order-
accurate formula for U, , was derived using a combination of differencing schemes
and the basic equation (1b),

Ui o= (18U;,y — Us s + 3dy/AX) Vg — Vigr o) + 3H4AY) oyl
(j=1,2,., NX),

[
LA

in which & = 0 denotes the value of the U index, as well as the value of the
index, on y = 0 (the bottom dashed line on Fig. 2(b)). The numerical values of it
are obtained by replacing U, ¥V, and 4y by i, T, and 4§ and setting w = 0 in
Eg. (35).

Numerical Results for Different Outer Conditions and Comparison with Analyical
Perturbation Solution

Numerical results for # and ¢ were obtained using the algorithimm described
above, with the mesh parameters NV == 32 {the number of open sguares or
circles in a cofummn in Fig. 2(b), which must be an integer power of 2, i.e., 2F} and
NX = 39 (NX = the number of open symbols in a horizontal row in Fig. 2(b}).
The value of § = (1 — M?2)'/2y for the upper boundary for all cases was 2.0, so
that 47 = 1/16. The x locations of the left and right boundaries were either squal
to or close to +1.0 (so that Ax = 1/20), those values varying according to the
desired x locations of input values of & on ¥ = 0. Thus the upstream and down-
stream computation boundaries were at or about one-half chord length from the
airfoil, and the upper boundary was at two chord lengths.

The differences in the results shown in Figs. 4-6 depend on (a) the way the
exterior condition (32¢) was imposed in the numerical problem, and (b) the x
locations of the imposed discrete conditions from Egs. {32c} and (32d). For both
Figs. 4 and 5 the exterior condition at infinity was replaced by imposing the exact
values of 7 and © given by Eq. (33) along the outer boundaries. This was done s¢ that
the first illustrations of this technique would not be affected by errors due
to approximate methods for applying conditions at infinity. {A similar procedure
was used in Ref. [8] for evaluating results of a technique for second-order equations
with elliptic operators.) Then for Fig. 6 the perturbation velocities were set at zero
on the exterior computation boundary. This is the most usual approximate way of
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applying exterior conditions for problems involving no lift when the analytical
solution is not known. The differences between Figs. 4 and 5 are in the x locations
of the imposed # on y = 0. For Fig. 4 the input x locations for #(x, 0*)(solid
circles in Fig. 4 and on bottom row of Fig. 2(b)) straddle both the leading and
trailing edges of the airfoil. For Fig. 5 the input x locations for ¢ (x, 0*) coincide
with both the leading edge and trailing edge. Since in Egs. (32c) and (32d) ¢ is
double-valued when those two points (x = -+0.5) are approached from the left

y

®  VON y=0. DISCRETE BOUNDARY
CONDITION
’ :%\\‘k\\\\;\ X O UONY=0, NUMERICAL SOLUTION
S ==~ VON §=0, ANALYTICAL BOUNDARY

CONDITION
U ON ¥=0, ANALYTICAL SOLUTION

=25 0 25 50
X

Fic. 4. Transformed Prandtl-Glauert perturbation velocities for thin parabolic-arc biconvex
airfoil with prescribed ¥ on chord line at points on mesh straddling the airfoil edges and with
exact perturbation conditions on exterior boundaries (VX = 39, NY == 32).

»  TON §=0, DISGRETE BOUNDARY
y CONDITION
O TONY=0, NUMERICAL SOLUTION
=~ — ¥ ON J=0, ANALYTICAL BOUNDARY
CONDITION
T ON §=0, ANALYTICAL SOLUTION

-l -75 -50 -25 0

x

FiG. 5. Transformed Prandtl-Glauert perturbation velocities for thin parabolic-arc biconvex

airfoil with prescribed ¢ on chord line at points on mesh coinciding with the airfoil edges and
with exact perturbation conditions on exterior boundaries (NX = 39, NY = 32).
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Fic. 6. Transformed Prandtl-Glauert perturbation velocities for thin parabolic-arc biconvex
airfoil with prescribed o on chord line at points on mesh straddling the airfoil edges and with
zerp perturbation conditions on exterior boundaries (VX = 39, NY = 32).

and from the right, the average values were used, #(4-0.5,0") = F-1.0 (see solid
circles on Fig. 3).

The numerical results for & (x, 0) in Figs. 4 and 5 (for exact conditions specified
on the computation boundary) are accurate for both cases. The singularities at the
edges are captured well in both figures, but this is most evident in Fig. 4 where i is
computed at exactly those points where the analytical solution is infinite. The
accuracy is surprising in view of the facts (a) that the numerical values of éi(x, 3}
are determined from a formula, Eq. (35), that involves numerical differentiation
of data alraadv obtained from the numerical solution. and {h\ that this is true even

ally 9 9
results of Figs. 4 and 5 would yield a mean solution that would be even more
accurate than either figure alone.

Fig. 6 corresponds to Fig. 4 except that zero perturbaticns are specified on the
outer boundaries. Clearly, the numerical resuits differ significantly from the
anaiytical solution near the outer computation boundaries. At the upstream com-
puiation boundary, the computed i(x, 0) goes tc zero; at the downstream
boundary, where 7 was specified as zero, the solution for # is also significantly in
error but is not zero. In spite of the proximity of the computation boundaries an
in spite of these expected errors near the computation boundaries, the numerical
results are quite accurate for x locations on the airfoil. Again {as in Figs. 4 and 5)
the edge singularities are captured well.

it is noted that the limitation of first-order accuracy at the upper boundary in

C PO . U s UL O LI UPCY PUSITIU (9] oyt
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Fig. 2(b) did not have any significant effect on the accuracy of the solution near the
airfoil because the flow variations at the upper (outer) boundary are very small.

Computing Times

The computation times required for this fast, direct solver are of special interest.
Table I lists computing times for significant portions of different cases of a program
comparable to that for the airfoil problem using the same fast direct U, ¥V solver.
The computing times were measured on the IBM 360/67 Operating System. The
computer programs used Gaussian elimination (as in Ref, [11]) for all the simple
tridiagonal solutions performed within the block cyclic reduction. For each case,

TABLE 1

Computing Times for U, V Solver on IBM 360/67
(FORTRAN 1V, Level H, OPT = 2)

NX NY t, (sec) 1, (sec) 15 (sec)
9 8 <.01 .02 <.01
19 16 .01 20 <.01
39 32 .05 35 .03
59 64 .14 1.95 A1
99 128 43 7.50 37

NX and NY are the mesh parameters defined in the section above, with reference to
Fig. 2(b). The time ¢, includes: all preliminary calculations of parameters, initial-
izing interior values of s and w, loading boundary values of U and ¥, modifying the
fringe of the interior to include boundary values (to get f. and g, in Eq. (7)),
zeroing boundary values, manipulating f;, and g; to get F, and G, , and computing
and storing all needed values of the A, for each required /. The time ¢, is the time
required for the cyclic reduction starting with the p{¥ and resulting in the V,
(see Fig. 3). Finally, ¢, is the time required to obtain U after V is known.

Note that £, and ¢, combined are about 10 ¢ of #,. Note also that ¢, is just that
time which would be required by a direct cyclic-reduction Poisson solver to compute
the velocity potential or stream function. If the results of a Poisson solver were used
to compute the velocity components throughout the entire field (which are auto-
matically provided by the Cauchy-Riemann solver), the times required by the
two algorithms would be even closer.
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CONCLUDING REMARKS

The above example problem in subsonic aerodynamics, including the comparison
of the numerical solutions with the analytical solution, has demonstrated several
attractive features of the new direct Cauchy-Riemann solver. First, the results
are highly accurate and capture well the singularities of the analytical solution.
Thus, whereas generalized relaxation schemes for such problems experience con-
vergence difficulties when these “peaks” occur, the direct solver easily produces
an accurate solution in a single step. Second, the measured computing times have
also demonstrated the high efficiency of the direct solver.

In future applications, the fast, direct Cauchy-Riemann solver is expected o be
useful in zerodynamic flow computations for which the right sides in the set of
first-order elliptic equations are not zero (accounted for in the developed
algorithm}. These anticipated applications include nonlinear equations, with the
direct solver being used within an iteration scheme. In addition it may be possible
to extend the algorithm to three dimensions as was done for the second-order
elliptic (Poisson) solver (Ref. [11]) and also to further generalize the generalized-
capacity-matrix techaique (Ref. [8]) to first-order equations for applving the direct
Cauchy—Riemann solver in problems with interior boundary conditions.

In summary, the results of the example problem have established the potential
usefulness of the new fast, direct Cauchy-Rismann solver in computing
aerodynamic flows, as well as in the solution of other similar problems in mathe-
matical physics governed by similar equations.

REFERENCES

1. O.BunemAN, “A Compact Non-lterative Poisson Solver,” SUIPR Rent. No. 294, Inst. Plasma
Research, Stanford University, Stanford, CA, 1969.

R. W. HoCkKNEY, J. Assoc. Comp. Mach. 12 (1965), G3.

R. W. HockNEY, Methods Computational Phys. 9 (1970), 135.

F. W. Dorgr, STAM Rev. 12 (1970), 248.

B. L. Buzseg, G. H. GoLug, AND C. W. NIELSON, SFAM J. Numer. Anal. 7 (1970, 627.

R. C. LeBan, J. Computational Phys. 9 (1972), 440.

P.J

1972

B

No W

J. Roacag, “Computational Fluid Dynamics,” Hermosa Publishers, Albuguergue. WM,
972.

8. E. D. Mar1n, A Generalized-Capacity-Matrix Technique for Computing Aercdynamic
Flows,” Paper presented at the Symposium on Application of Computers to Fluid Dynamics
Analysis and Design, Polytechnic Institute of Brocklyn Graduate Center, Farmingdale, WY,
Jan. 3-4, 1973, To appear in Computers and Fluids.

9. J. L. Stecer AND H. Lomax, Generalized relazation methods applied to problems in transonic
flow, ir “Lecture Notes in Physics, Vol. 8, Proceedings of the Secend International Conference
on Numerical Methods in Fluid Dynamics™ (M. Hoit, Ed.), p. 193, Springer-Verlag, Berlin/
Heidelberg/New York, 1971.

581/15/1-6



80 LOMAX AND MARTIN

10
11
12

13.

14.

15.

16.

. J. L. STEGER AND J. M. KLINEBERG, AIAA4 J. 11 (1973), 628.

. E. D. MARTIN, Internat. J. Numer. Methods Engr. 6 (1973), 201.

. R. T. Jones AnND D. CoHeN, Aerodynamics of wings at high speeds, in “Aerodynamic Com-
ponents of Aircraft at High Speeds™ (A. F. Donovan and H. R. Lawrence, Eds.), Vol. VII,
Section A, High Speed Aerodynamics and Jet Propulsion, Princeton University Press,
Princeton, NJ, 1957. Also available as Princeton Aeronautical Paperback No. 6 entitled
“High Speed Wing Theory,” 1960.

L. PranDTL, “General considerations on the flow of compressible fluids,” NACA Tech.
Mem. 805, 1936.

M. J. LicurHILL, Higher approximations, Section E, in “General Theory of High Speed
Aerodynamics™ (W. R. Sears, Ed.), Vol. VI, High Speed Aerodynamics and Jet Propulsion,
Princeton University Press, Princeton, NJ, 1954. Also available as Princeton Aeronautical
Paperback No. 5, entitled “Higher Approximations in Aerodynamic Theory,” 1960.

W. R. SEArs, Small perturbation theory, Section C, in “General Theory of High Speed
Aerodynamics” (W. R. Sears, Ed.), Vol. VI, High Speed Aerodynamics and Jet Propulsion,
Princeton University Press, Princeton, NJ, 1954, Also available as Princeton Aeronautical
Paperback No. 4 entitled “Small Perturbation Theory,” 1960.

. R. A. Sweert, J. Computational Phys. 12 (1973), 422.



